
CS166 Handout 05
Spring 2018 April 3, 2018

Problem Set 0: Concept Refresher

This frst problem set of the quarter is designed as a refresher of the concepts that you’ve seen in the
prerequisite courses leading into CS166 (namely, CS103, CS107, CS109, and CS161). We hope
that you fnd these problems interesting in their own right. By the time you’re done, you should be in
algorithmic and coding shape for the rest of the quarter!

Before starting this problem set, we recommend reading over

• Handout #02, “Mathematical Terms and Identities,” for a recap of some concepts and equa-
tions you’ve likely seen in the past;

• Handout #03, “Problem Set Policies,” for more information about our submission and col-
laboration policies; and

• Handout #04, “Computer Science and the Stanford Honor Code,” for details about the
Honor Code and how it applies in CS166.

As always, feel free to get in touch with us if you have any questions. We’re happy to help out.

Due Tuesday, April 10th at 2:30PM.

 2 / 4

Section One: Mathematical Prerequisites

Problem One: Fibonacci Fun! (3 Points)

The Fibonacci numbers are a famous sequence defned as

F0 = 0 F1 = 1 Fn+2 = Fn + Fn+1.

For example, the frst few terms of the Fibonacci sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

The Fibonacci numbers show up in surprising places in the analysis of algorithms and data structures.

One nice property of the Fibonacci numbers is that Fn = Θ(φn), where φ is the golden ratio. The golden
ratio is φ=

1+√5
2 and is the positive root of the equation x2 = 1 + x.

i. Using the formal defnition of big-O notation, prove that Fn = O(φn). To do so, fnd explicit
choices of the constants c and n₀ for the defnition of big-O notation, then use induction to prove
that those choices are correct.

ii. Using the formal defnition of big-Ω notation, prove that Fn = Ω(φn). As before, fnd explicit
choices of c and n₀ needed by the defnition of big-Ω notation, then use induction to prove that
those choices are correct.

Problem Two: Probability and Concentration Inequalities (4 Points)

Let X₁, X₂, …, Xₙ be a collection of n nonnegative random variables such that E[Xi] = 1 for each variable
Xi. (Note that these random variables might not all be independent of one another.)

i. Prove that Pr [∑i=1
n Xi ≥ 2n] ≤ 1

2 . You may want to use Markov’s inequality.

Now, suppose you learn that Var[Xi] = 1 for each variable Xi and these variables are all pairwise indepen-
dent (that is, Xi and Xj are independent for any i ≠ j).

ii. Prove that Pr [∑i=1
n Xi ≥ 2 n] ≤ 1

n . You may want to use Chebyshev’s inequality.

What happens, though, if the conditions from part (ii) of this problem are weakened so that the variables
are not necessarily pairwise independent?

iii. Pick a natural number n and defne a collection of random variables X₁, X₂, …, Xₙ such that

◦ each Xi is nonnegative,

◦ E[Xi] = 1 for each variable Xi,

◦ Var[Xi] = 1 for each variable Xi, but

◦ Pr [∑i=1
n Xi ≥ 2n] > 1

n .

This shows that the pairwise independence requirement is essential for part (ii) of this problem to
work. Once you’ve done this, go back to your proof from part (ii) and make sure you can point
out the specifc spot where the math breaks down once you’ve removed that requirement.

 3 / 4

Section Two: Algorithmic Prerequisites

Problem Three: Binary Search Trees (4 Points)

Binary search trees are one of the most versatile and fexible data structures in existence and we’ll explore
their many properties over the course of the quarter. In the course of doing so will get to see some really,
really cool ideas from Theoryland. Before we do that, though, we want to make sure everyone’s had a
chance to refresh some of the core concepts from BSTs.

To complete this part of the assignment, download the starter fles from

/usr/class/cs166/assignments/ps0

and implement the functions in the bst.c source fle. Test your implementation extensively. You may
want to use our provided test harness as a starting point. Feel free to add your own tests on top of ours.

To receive full credit on this part of the assignment, your code must compile with no warnings (e.g. com-
piled with -Wall -Werror turned on) and should run cleanly under valgrind (that is, you should have
no memory errors or memory leaks). We will test your code on the myth machines, so we recommend
you test there before submitting.

i. Implement a function

void insert_into(struct Node** root, int value);

that inserts the specifed value into the specifed BST if it doesn’t already exist. Your algorithm
should run in time O(h), where h is the height of the tree. (You can assume that root is not NULL,
though *root can be NULL when the BST you’re inserting into is empty.) You do not – and, in
fact, should not – make any attempt to balance the tree.

ii. Implement a function

void free_tree(struct Node* root);

that deallocates all memory associated with the specifed tree. Your function should run in time
Θ(n), where n is the number of nodes in the tree.

iii. Implement a function

size_t size_of(const struct Node* root);

that returns the number of nodes in the specifed tree. Your function should run in time Θ(n),
where n is the number of nodes in the tree.

iv. Implement a function

int* contents_of(const struct Node* root);

that returns a pointer to a dynamically-allocated array containing the elements of that BST in
sorted order. Your function should run in time Θ(n), where n is the number of nodes in the tree.

v. Implement a function

const struct Node* second_min_in(const struct Node* root);

that returns a pointer to the second-smallest element of the given BST, or NULL if the tree doesn’t
have at least two elements. Your function should run in time O(h), where h is the height of the
tree.

 4 / 4

Problem Four: Event Planning (4 Points)

You’re trying to fgure out what Fun and Exciting Things you’d like to do over the weekend. You down-
load a list of all the local events going on in your area. Each event is tagged with its location, which you
can imagine is a point in the 2D plane. (We’ll pretend that the world is fat, at least in a small neighbor-
hood around your location. Thanks, multivariable calculus.) You also have your own (x, y) location.

Design a algorithm that, given some number k, returns a list of the k events that are closest to you. Your
algorithm should run in time O(n), where n is the number of nearby events (notice that this runtime
bound is independent of k.) Then prove your algorithm is correct and meets the required time bounds.

Some specifc details and edge cases to watch for:

• Your algorithm can produce the list of the k nearest events in whatever order you’d like.

• If there are multiple events tied for the same distance, you can break ties arbitrarily.

• By “distance,” we mean Euclidean distance. We’re already assuming the world is fat, so while
we’re at it seems pretty reasonable to also ignore things like roads and speed limits. ☺

A note on this problem, and other problems going forward: when measuring runtime in the context of al-
gorithms and data structures, it’s important to distinguish between deterministic and randomized algo-
rithms. There’s a lot of research into how to take randomized algorithms with a nice expected runtime and
convert them into deterministic algorithms with a nice worst-case runtime. Since this problem set is de-
signed as a warm-up, we’ll accept either a deterministic algorithm with a worst-case runtime of O(n) or a
randomized algorithm with an expected runtime of O(n), though in the future we’ll tend to be a bit
stricter about avoiding randomness.

As a hint, think about using a fast selection algorithm.

	Section One: Mathematical Prerequisites
	Problem One: Fibonacci Fun! (3 Points)
	Problem Two: Probability and Concentration Inequalities (4 Points)
	Section Two: Algorithmic Prerequisites
	Problem Three: Binary Search Trees (4 Points)
	Problem Four: Event Planning (4 Points)

